US009304768B2

a2 United States Patent 10) Patent No.: US 9,304,768 B2
Ruehle (45) Date of Patent: Apr. 5, 2016
(54) CACHE PREFETCH FOR DETERMINISTIC géé%,;% gl ggggg Eellf_:y
) i ereira
FINITE AUTOMATON INSTRUCTIONS 6700500 Bl  3/2004 Ng
. . 6,934,796 Bl 8/2005 Pereira
(71) Applicant: Intel Corporation, Santa Clara, CA 7,119,577 B2 10/2006 Sharangpani
(as) 7,382,637 Bl 6/2008 Rathnavelu
7,539,032 B2 5/2009 Ichiriu
. ; 7,710,988 Bl 5/2010 Tripathi
(72) Inventor: Michael Ruehle, Albuquerque, NM (US) 7805392 Bl /2010 Steele
. . 7,899,904 B2 3/2011 Ruehle
(73) Assignee: Intel Corporation, Santa Clara, CA 7,945,528 B2 5/2011 Cytron
(US) 8,024,802 Bl 9/2011 Preston
8,051,085 Bl  11/2011 Srinivasan
% o : : : : 8,347,384 Bl 1/2013 Preston
(*) Notice: Subject. to any dlsclalmer,. the term of this 8448249 Bl 52013 Preston
patent is extended or adjusted under 35 )
U.S.C. 154(b) by 642 days. (Continued)
OTHER PUBLICATIONS
(21) Appl. No.: 13/718,966
Morita, et al. (Apr. 1994). Parallel generation and parsing of array
(22) Filed: Dec. 18, 2012 languages using reversible cellular automata. International Journal of
Pattern Recognition and Artificial Intelligence, 8(02), 543-561.
(65) Prior Publication Data (Continued)
US 2014/0173254 Al Jun. 19, 2014
Primary Examiner — Scott Sun
(51) IGnot;gglg')Bg (2006.01) (74) Attorney, Agent, or Firm — Barnes & Thornburg LLP
GO6F 9/30 (2006.01) (57) ABSTRACT
GOeF 12/08 (2006.01) In a DFA scanning engine used to match regular expressions
GOGF 9/00 (2006.01) or similar rules, instructions to execute DFA state transitions
(52) US.CL are accessed through an instruction cache. Each DFA instruc-
CPC . GO6F 9/30047 (2013.01); GO6F 9/3802 tion may indicate varying numbers of transitions or branches
(2013.01); GOGF 12/0862 (2013.01); GO6F from a current state. The cache pre-fetches a requested num-
2212/6026 (2013.01) ber of additional instructions consecutively following an
(58)  Field of Classification Search accessed instruction. The DFA engine accesses an instruction
None o ] from the cache corresponding to a state within a small number
See application file for complete search history. of transitions from the root state. When a low-branching
. instruction is executed to access a next instruction from the
(56) References Cited root state, or when a low-branching instruction is executed to

U.S. PATENT DOCUMENTS

5,485,620 A 1/1996 Sadre
5,870,576 A 2/1999 Faraboschi
5,937,181 A 8/1999 Godefroid

access a next instruction from the cache, a fixed or config-
urable pre-fetch length is requested. Some instructions such
as low-branching instructions may contain a pre-fetch hint.

22 Claims, 4 Drawing Sheets

310,

Predetermined distance
for pre-fetch is
Set in DFA

l

320

DFA receives input
symbols and accesses
instructions

State at Least
Pre-determined
Distance from
Root stated,

Pre-fetch a determined
number of instructions to
the instruction cache

]

340,




US 9,304,768 B2
Page 2

(56)

8,516,456

8,572,106

8,862,603

8,964,548
2001/0014936
2002/0124162
2003/0051043
2003/0065800
2004/0162826
2004/0215593
2005/0012521
2005/0198625
2005/0273450
2006/0101195
2006/0136570
2006/0277534
2007/0130140
2007/0182540
2008/0034427
2008/0046423
2008/0059464
2008/0071780
2008/0109431
2008/0140600
2008/0270342
2008/0271141
2009/0063825
2009/0119399
2009/0177669
2009/0327252
2010/0095367
2010/0191958
2010/0192225
2010/0198850
2010/0229238
2010/0232447
2011/0022617

References Cited

U.S. PATENT DOCUMENTS

Bl
Bl
Bl
Bl
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al

8/2013
10/2013
10/2014

2/2015

8/2001

9/2002

3/2003

4/2003

8/2004
10/2004

1/2005

9/2005
12/2005

5/2006

6/2006
12/2006

6/2007

8/2007

2/2008

2/2008

3/2008

3/2008

5/2008

6/2008
10/2008
10/2008

3/2009

5/2009

7/2009
12/2009

4/2010

7/2010

7/2010

8/2010

9/2010

9/2010

1/2011

Starovoitov
Estan
Watson
Keralapura
Jinzaki
Yung
Wyschogrod
Wyschogrod
Wyschogrod
Sharangpani
Sharangpani
Shi
McMillen
Jain

Pandya ................

Kasuya
Cytron
Marman
Cadambi
Khan Alicherry
Law
Ichiriu
Kori
Pandya
Ruehle
Goldman
McMillen
Hussain
Ramarao
Zhang
Narayanaswamy
Chen

Ma
Cytron
Ma

Jing
Yamagaki

....... 709/217

2011/0093496 Al 4/2011 Bando
2011/0145181 Al 6/2011 Pandya
2011/0196971 Al 82011 Reguraman
2011/0219208 Al 9/2011 Asaad
2011/0258210 Al 10/2011 Agarwal
2011/0307433 Al 12/2011 Dlugosch
2012/0011094 Al 1/2012 Yamagaki
2012/0330868 Al  12/2012 Tago
2012/0331554 Al 12/2012 Goyal
2013/0046954 Al 2/2013 Ruehle
2013/0073503 Al 3/2013 Nagao
2013/0111503 Al 5/2013 Tago
2014/0040261 Al 2/2014 Home
2014/0101185 Al 4/2014 Ruehle
2014/0114996 Al 4/2014 Ruehle
2014/0115263 Al 4/2014 Ruehle
2014/0143195 Al 5/2014 Ruehle
2014/0173603 Al 6/2014 Ruehle
2014/0208076 Al 7/2014 Ruehle
2014/0229926 Al 82014 Xu
OTHER PUBLICATIONS

Suejb Memeti, “Automatic Java Code Generator for Regular Expres-
sion and Finite Automata”, published by Linneaeus Univeristy,
Vaxjo, SE, for Degree Project, May 2012, pp. 1-47.

Michela Becchi, Charlie Wiseman, Patrick Crowley, “Evaluating
Regular Expression Matching Engines on Network and General Pur-
pose Processors”, Sth ACM/IEEE Symposium on Architectures for
Networking and Communications Systems (ANCS’09), Oct. 2009,
pp. 30-39.

Michela Becchi, Mark Franklin, and Patrick Crowley, “A Workload
for Evaluating Deep Packet Inspection Architectures”, Workload
Characterization, 2008. IISWC 2008. IEEE International Sympo-
sium on, Oct. 2008, pp. 79-89.

Michela Becchi, Patrick Crowley, “A Hybrid Finite Automaton for
Practical Deep Packet Inspection”, CONEXT ’07 Proceedings of the
2007 ACM CoNEXT conference, Dec. 2007, pp. 1-12.

* cited by examiner



U.S. Patent Apr. 5, 2016 Sheet 1 of 4 US 9,304,768 B2

States for single
fong rule

\120

High branching
near root state

108

Fig. 1



U.S. Patent Apr. 5, 2016 Sheet 2 of 4 US 9,304,768 B2

240
External /

Memory

220

AN

Instruction <—
Cache

Input

> DFA Engine - > Output

Symbols \

/ \ 250

230 210

Fig. 2



U.S. Patent

Apr. 5, 2016 Sheet 3 of 4

310 Predetermined distance
\ for pre-fetch is <
Set in DFA

i

320 DFA receives input

\ symbols and accesses
instructions

\ 4

330

Current DFA

State at Least
Pre-determined
Distance from
Root state?

Yes

340 Pre-fetch a determined
\ number of instructions to
the instruction cache

350

Fig. 3

US 9,304,768 B2



U.S. Patent Apr. 5, 2016 Sheet 4 of 4 US 9,304,768 B2

400 \

410 Predetermined

\ Branching
thresholds set

420 Execute one or more

\ instructions <]

430 Extract branch

\\ value from

executed instruction

440 Pre-fetch instruction
\ based on thresholds

450

Fig. 4



US 9,304,768 B2

1
CACHE PREFETCH FOR DETERMINISTIC
FINITE AUTOMATON INSTRUCTIONS

FIELD OF THE INVENTION

The field of the invention relates generally to computer
systems and more specifically to processing of symbols.

BACKGROUND OF THE INVENTION

With the maturation of computer and networking technol-
ogy, the volume and types of data transmitted on the various
networks have grown considerably. For example, symbols in
various formats may be used to represent data. These symbols
may be in textual forms, such as ASCII, EBCDIC, 8-bit
character sets or Unicode multi-byte characters, for example.
Data may also be stored and transmitted in specialized binary
formats representing executable code, sound, images, and
video, for example. Along with the growth in the volume and
types of data used in network communications, a need to
process, understand, and transform the data has also
increased. For example, the World Wide Web and the Internet
comprise thousands of gateways, routers, switches, bridges
and hubs that interconnect millions of computers. Informa-
tion is exchanged using numerous high level protocols. Fur-
ther, instructions in other languages may be included with
these standards, such as Java and Visual Basic. There are
numerous instances when information may be interpreted to
make routing decisions. In an attempt to reduce the complex-
ity associated with routing decisions, it is common for pro-
tocols to be organized in a matter resulting in protocol specific
headers and unrestricted payloads. Subdivision of the packet
information into packets and providing each packet with a
header is also common at the lowest level, for example TCP/
IP. This enables the routing information to be at a fixed loca-
tion thus making it easy for routing hardware to find and
interpret the information. With the increasing nature of the
transmission, of information, there is an increasing need to be
able to identity the contents and nature of the information as
it travels across servers and networks. Once information
arrives at a server, having gone through all of the routing,
processing and filtering along the way, it is typically further
processed. This further processing necessarily needs to be
high speed in nature. The first processing step that is typically
required by protocols, filtering operations, and document
type handlers is to organize sequences of symbols into mean-
ingful, application specific classifications. Ditferent applica-
tions use different terminology to describe this process. Text
oriented applications typically call this type of processing
lexical analysis. Other applications that handle non-text or
mixed data types call the process pattern matching.

SUMMARY OF THE INVENTION

An embodiment of the invention may therefore comprise a
method of pre-fetching instructions to an instruction cache
for a DFA engine during a DFA descent, said DFA descent
comprising a transition depth and a branching value, the
method comprising accessing an instruction from an instruc-
tion cache, and pre-fetching a number of instructions imme-
diately following the accessed instruction to the instruction
cache.

An embodiment of the invention may further comprise a
system of pre-fetching instructions into an instruction cache
for use in a DFA engine, the system comprising an instruction
cache enabled to fetch instructions from an external memory’
and a DFA engine enabled to access instructions from the

10

15

20

25

30

35

40

45

50

55

60

65

2

instruction cache, and to execute said instructions and to
request pre-fetch of instructions to the instruction cache
based on an algorithm.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a diagram of an example of a typical DFA state.

FIG. 2 is a block diagram of an embodiment of the inven-
tion.

FIG. 3 is a flow diagram of an embodiment of a depth-
derived instruction pre-fetch in a DFA.

FIG. 4 is a flow diagram of an embodiment of a branch-
derived instruction pre-fetch in a DFA.

DETAILED DESCRIPTION OF THE
EMBODIMENTS

Performing lexical analysis or pattern matching is gener-
ally a computationally expensive step. This is because every
symbol of information needs to be examined and disposi-
tioned.

Regular expressions are used for pattern matching and
lexical analysis. Regular expressions provides a concise and
flexible means for “matching” strings of text, such as particu-
lar characters, words, or patterns of characters. Abbreviations
for “regular expression” include “regex” and regexp” and
these abbreviations may be used throughout this specification
interchangeably with each other and with the term “regular
expression”. A regular expression is written in a formal lan-
guage that can be interpreted by a regular expression proces-
sor, which can be a program that examines text or other
characters in and identifies parts that match the provided rules
of'the regular expression. A regular expression in its simplest
expression is a pattern. It is an expression that specifies a set
of strings

Examples of specifications that could be expressed in a
regular expression are as follows:

the sequence of characters “car” appearing consecutively

in any context, such as in “car”, “cartoon”, or “bicarbon-
ate”

the sequence of characters “car” occurring in that order

with other characters between them, such as in “Ice-
lander” or “chandler”

the word “car” when it appears as an isolated word

the word “car when preceded by the word “blue” or “red”

the word “car” when not preceded by the word “motor”

a dollar sign immediately followed by one or more digits,

and then optionally a period and exactly two more digits
(for example, “$100” or “$245.98”).
These sequences are simple and are intended only for pur-
poses of example. Specifications of great complexity are con-
veyable by regular expressions.

Regular expressions are used by many text editors, utilities,
and programming languages to search and manipulate text
based on patterns. Some of these languages, including Perl,
Ruby, AWK, and Tcl and may integrate regular expressions
into the syntax of the core language itself. Other program-
ming languages like .NET languages, Java, and Python pro-
vide regular expressions through standard libraries.

To find matches to regular expressions or similar pattern
matching rules within a symbol stream, two main types of
state machines may be constructed, nondeterministic and
deterministic finite automata (NFAs and DFAs). Abstractly,
an NFA or DFA is a directed graph in which each graph vertex
is a state and each graph edge is labeled with a class of input
symbols that it accepts. A transition from a source state to a
destination state is represented on that symbol class. The



US 9,304,768 B2

3

defining difference between NFAs and DFAs is that any two
out-transitions from a DFA state must have non-intersecting
symbol classes, whereas a single NFA state may have mul-
tiple out-transitions labeled with classes containing the same
symbol.

Executing a DFA to find rule matches in a symbol stream
involves making a traversal or descent of the DFA graph while
examining and consuming consecutive symbols of the input
stream. The descent begins in a root state, and a first symbol
is examined to determine which transition from the root state,
if any, has a symbol class containing that first symbol. If a
transition is found matching the first symbol, the symbol is
consumed and the descent moves to the destination state of
the matching transition. In that state, the next input symbol is
examined and consumed to make a matching transition to a
further next state, and so on until no transition matches and
the DFA descent terminates. During the descent, accepting
states may be visited, which indicate that one or more rules
have been matched, each match typically beginning with the
first symbol consumed and ending with the most recent sym-
bol consumed. Such rule matches may be reported, such as by
outputting a token comprising a rule ID and the start and end
positions of the match.

The states and transitions of a DFA may be represented in
instructions, where one or more instructions encode the tran-
sitions from each DFA state. In some cases, a single instruc-
tion may indicate the number of transitions in a correspond-
ing current state and may encode a method of determining
which transition should be taken based on the current input
symbol and a method of determining the address of a next
instruction corresponding to the determined transition or next
state.

A hardware DFA engine performing a DFA descent typi-
cally accesses instructions through an instruction cache
because DFAs are often very large in terms of quantities of
states, transitions, and instructions. When accessed, the
instruction cache, using any cache architecture, may “hit”,
meaning the accessed instruction is present in a small local
memory, and return the instruction relatively quickly, for
instance in 1 clock cycle. An accessed instruction may also
“miss”, meaning the accessed instruction is not present in the
small local memory. In such a circumstance, the instruction
will need to be fetched from elsewhere, such as external
memory, which may take as much as 60 cycles, for example.
Whenever there is a cache miss, the DFA descent is delayed
until the accessed instruction is retrieved from external
memory. Therefore frequent cache misses can be a significant
performance inhibitor for a DFA engine.

Because DFAs are commonly very large, only a relatively
small portion of instructions may be present in the cache at a
time. This may result in relatively higher cache miss rates. In
particular, when a DFA engine matches or partially matches a
rule which has not been matched recently, few or no instruc-
tions associated with the rule may be present in the cache.
While the rule is matching, every instruction access, or every
access within a new cache line, may miss the cache. For a
moderately long rule, a great deal of time may be lost waiting
for instructions. In some applications with moderately large
rule sets, it is likely that each rule matched has not been
matched recently enough to have many instructions in the
cache.

In an embodiment of a method of the invention, a pre-fetch
of DFA instructions following accessed instructions is per-
formed. The pre-fetch may be limited to circumstances when
it is more helpful and may vary the number of pre-fetched
instructions.

30

40

45

50

4

In a DFA generated from a substantially large ruleset for
one of many applications, graph topology near the root state
is often more complex than deeper in the automaton. At the
root, all rules are able to begin matching. There are many root
branches corresponding to many different first symbols and
symbol classes of the rules. High branching often continues
but decreases for a few levels away from the root state. This is
much like the manner in which a dictionary matches many
word with a first letter but fewer matches are available the
more in-depth one looks at the word. Within a fairly small
number of transitions from a root state, for example 2 to 5
transitions, typical rules used in DFAs have distinguished
themselves from other rules. At such a point, branching tends
to become lower, for example 1 to 2 branches from each state.
It is understood that this type of DFA behavior is not absolute
oruniform. Rather, it is a tendency that may be utilized by the
methods and systems of this invention. It is also understood,
that high branching states may appear deeper in a DFA. This
may occur, for example, when a group of rules deliberately
match an identical prefix pattern, but then suddenly diverge to
match many different suffix patterns. This is similar to the
appearance of another characteristic DFA structure appearing
with its high-branching root deep inside another DFA.

States near the root tend to be high-branching. They have
large corresponding instruction blocks. As each descent
through such a state may access only one instruction from the
block, access is sparse. Partial “false positive” matching from
random matching behavior is much more common near the
root state. This is similar to a random two-letter sequence
having a moderate probability of matching the first two letters
of' some word in a dictionary. A random four-letter sequence
is less likely to match a start of any word. As an example,
selecting a random dictionary, the probability of a random
K-letter sequence matching the start of some word is: for
K=1, 100%; for K=2, 47%; for K=3, 18%; for K=5, 0.3%.
After a rule has successfully matched for a few symbols, it is
more likely that the input is not stimulating the rule in a
random fashion. It is either matching the rule or matching
some meaningful structure corresponding to the beginning of
the rule. It is relatively likely that the input will continue
matching the rule. After a DFA descent passes a few transi-
tions away from the root state, such as 2 to 5 transitions,
sparse access patterns in corresponding instructions typically
become uncommon, and roughly sequential access patterns
typically become common.

FIG. 1 is a diagram of an example of a typical DFA. The
DFA 100 starts with a root state 101. The initial root state 101
branches into four second level states. The root state 101 can
be considered a high-branching state. The second tier states
likewise branch into a number of tertiary level states. One of
the secondary states is a high branching state 106. Another of
the secondary states is not a high branching state 105. For the
purposes of this example, the high-branching near root states
110 include the root state 101 and those that are 1 and 2
transitions removed from the root state 101. It is understood
that the states that are 1 and 2 transitions removed from the
root state may contain many more transitions than those
shown in the example DFA 100. Additional states for a single
long rule 120 are shown in the transitions from the high
branching near root states 110.

FIG. 2 is a block diagram of an embodiment of a DFA
engine. The DFA engine 210 is enabled to receive and fetch
instructions from an instruction cache 220. The instruction
cache 220 is enabled to receive and fetch instructions from an
external memory 240. It is understood that the instruction
cache 220 can vary in size and may store more or less instruc-
tions at any time. The DFA engine is also enabled to receive



US 9,304,768 B2

5

input symbols 230 from an input stream and to produce out-
puts 250 such as tokens resulting from matches.

FIG. 3 is a flow diagram of an embodiment of a depth-
derived instruction pre-fetch in a DFA. A first step 310 indi-
cates the setting of a value for the descent depth of the DFA
for when instructions will be pre-fetched. The DFA will
receive input symbols and access instructions 320. If the
descent of the DFA is beyond a threshold depth away from the
root state 330, a number of instructions will be pre-fetched to
the instruction cache 340. If the depth is not beyond the
threshold, the DFA will continue normally and access and
execute a next instruction 320. After the pre-fetch 340, the
DFA will access a next instruction and proceed normally 320.
The DFA may pre-fetch instructions at each instruction
execution 320 even though a pre-fetch occurred at a previous
instruction. As noted, the cache is enabled to determine if it
has the instructions for which the pre-fetch is issued. If the
instructions are already in the cache, then no further action is
required. However, for the instructions that are not in the
cache, those instructions can be pre-fetched. The successive
nature of the pre-fetch ensures that next instructions are more
likely to be in the cache. Also, since the pre-fetch is repetitive,
a full pre-fetch of all requested instructions is not necessarily
performed on each request. It is understood that there are
alternatives and modifications to the method shown in FIG. 3,
as discussed in this disclosure.

In an embodiment of the invention, the DFA engine and
instruction cache may be configured to pre-fetch some pre-
determined number of instructions after an accessed instruc-
tion. This occurs only when the accessed instruction is for a
state several levels away from the root. The state at the begin-
ning of the additional states for a single long rule 120 would
be such a state. As noted, the threshold depth for the DFA 100
is shown as 3. The cache may be configured to accept a
pre-fetch request with each instruction access and always, or
when practical, fulfill such a request by making sure the
requested number of successive instructions after the
accessed instruction are present in the cache. If the successive
instructions are not present, the cache will fetch them. The
DFA engine may be configured to count steps taken during a
DFA descent and compare this depth value with a fixed or
configurable depth threshold. When the depth exceeds the
threshold, the DFA engine will request pre-fetch with each
additional instruction access to the cache. The length of pre-
fetch requested may be a single fixed or configurable value. It
may also be a fixed or configurable function of the depth. For
example, pre-fetch length could be 0 for depth<4, 4 for
depth=4, 8 for depth=5, 12 for depth=6 and 16 for depth>6.
This table, in essence, may be hardwired into the DFA. The
table may also be loadable into the DFA engine. It is under-
stood that these are examples and the user of a DFA engine
may be allowed to configure the depth according to the use of
the DFA.

FIG. 4 is a flow diagram of an embodiment of a branch-
derived instruction pre-fetch in a DFA. Branching thresholds
are set410. As instructions are executed 420, the branch value
for states and transitions is extracted from the instructions
430. Based upon a comparison between the threshold and the
branch value of a state, a pre-fetch request may be made. As
noted above in relation to FIG. 3, the pre-fetch may be incre-
mental based on which instructions are already in the cache.
The DFA will continue to execute instructions normally 450
and issue pre-fetch requests based on branching values. It is
understood that there are alternatives and modifications to the
method shown in FIG. 4, as discussed in this disclosure.

In an embodiment of the invention, a method is used to
determine the pre-fetch length to request with each cache

10

15

20

25

30

35

40

45

50

55

60

65

6

instruction accessed. As noted, state branching is typically
higher near the root state and some sparse access patterns are
caused by high branching states. Accordingly, state branching
can also be used to guide pre-fetch requests. Each instruction
access after the root state is determined by executing one or
more previous instructions in conjunction with examined
input symbols. The previous instructions typically contain
some indication of the branch count of the corresponding
state. This branching value can be extracted from each
instruction executed and used to determine the pre-fetch
length to request with the next instruction access in the DFA
descent. If the branching value is high, then zero pre-fetch
may be requested. If the branching value is low (below a
predetermined threshold), then a fixed or configurable pre-
fetch length may be requested. The threshold canbe 2 or 4, for
example. As with a depth-derived pre-fetch, branching-de-
rived pre-fetch may be a fixed or configurable function of the
value. For example, pre-fetch length could be O for branching
greater than 3, 4 for branching equal to 3, 8 for branching
equal to 2, and 16 for branching equal to 1.

This embodiment of branching-derived pre-fetch mini-
mizes cache misses while matching a long rule. This is
because, after many symbols, rules have mostly distinguished
themselves from other rules and branching is low. It is also
likely to avoid cache pollution. This is because sparse access
patterns occur primarily in high branching areas of the DFA,
including near the root. Branching-derived pre-fetch has the
additional feature that if high branching reappears in a DFA
far from the root, resulting in sparse access patterns, the
pre-fetch selection will adapt accordingly.

In an embodiment of the invention, a method is used to
determine the pre-fetch length to request with each cache
instruction accessed. DFA instructions may be equipped to
encode pre-fetch hints. The hints are determined by a DFA
compiler or other tool. The pre-fetch hints are read by the
DFA engine and used to request corresponding pre-fetch
lengths from the instruction cache. Pre-fetch hints may be
selected by the compiler or other tool based on distance from
the root state or branching, according to the embodiments
discussed above. Pre-fetch hints may also be selected to cover
only or mostly following instructions reachable by transitions
from the current state. For example, in the last several instruc-
tions used to match a given rule, only a small number of
following instructions associated with that rule will remain
reachable. Pre-fetch hints may accordingly be set increas-
ingly small to cover only those remaining instructions. Hints
may be annotated into the instructions by a compiler enabled
to do so. The compiler will be able to determine the number of
reachable instructions from a certain state and annotate the
instructions accordingly. It is understood that instructions
may be locatable in a number of different manners depending
on how a compiler operates. The compiler may lay out the
instructions in memory in a branch oriented fashion or in a
manner which takes descent depth into consideration; for
example, the compiler may order instructions according to a
depth-first or breadth-first traversal of the DFA graph. Since
instructions are pre-fetched sequentially, and since the com-
piler will know how it is organizing the instructions, the
compiler will be able to determine which instructions are
reachable from a certain state and limit pre-fetch accordingly.

Pre-fetch hints may be included in instruction formats that
have room, but DFA depth or state branching may be used to
select pre-fetch length when no hint is present in an instruc-
tion. Pre-fetch hints may be encoded in types or formats of
DFA instructions corresponding to low-branching states.
This is because low-branching instructions may have spare
room available to encode pre-fetch hints, whereas high-



US 9,304,768 B2

7

branching instructions require more of other information, and
may not have room for pre-fetch hints. Pre-fetch is generally
not particularly useful in high branching instances, so there
may be little or no cost to omitting pre-fetch hints from high
branching instructions.

Depth-derived pre-fetch may over-ride branching-derived
pre-fetch at low branching or high branching, or a fixed or
configurable function of both depth and branching variables
may be employed. The embodiments of the invention may
thereby be combined.

The foregoing description of the invention has been pre-
sented for purposes of illustration and description. It is not
intended to be exhaustive or to limit the invention to the
precise form disclosed, and other modifications and varia-
tions may be possible in light of the above teachings. The
embodiment was chosen and described in order to best
explain the principles of the invention and its practical appli-
cation to thereby enable others skilled in the art to best utilize
the invention in various embodiments and various modifica-
tions as are suited to the particular use contemplated. It is
intended that the appended claims be construed to include
other alternative embodiments of the invention except insofar
as limited by the prior art.

What is claimed is:

1. A method of pre-fetching instructions to an instruction
cache for a Deterministic Finite Automaton (DFA) engine
during a DFA descent, said DFA descent comprising a tran-
sition depth and a branching value, said method comprising:

accessing an instruction from an instruction cache; and

pre-fetching a number of instructions immediately follow-
ing the accessed instruction to the instruction cache,
wherein the number of instructions is selected based on
atleast one of the transition depth or the branching value.

2. The method of claim 1, wherein the number of instruc-
tions is selected based on the transition depth.

3. The method of claim 2, wherein said selection is by
comparing the transition depth with a threshold value and
selecting the number of instructions to be zero only if the
transition depth is less than the threshold.

4. The method of claim 1, wherein the number of instruc-
tions is based on the branching value.

5. The method of claim 4, wherein the number of instruc-
tions is determined by comparing the branching value to a
threshold and pre-fetching zero instructions only if the
branching value is greater than the threshold.

6. The method of claim 1, wherein the number of instruc-
tions is based on the transition depth and the branching value.

7. The method of claim 1, wherein at least one instruction
contains a pre-fetch hint, and if an executed previous instruc-
tion contains a pre-fetch hint, the number of instructions
selected is based on the contained hint.

8. The method of claim 7, wherein if the previous instruc-
tion does not contain a hint, the number of instructions is zero.

9. The method of claim 7, wherein if the previous instruc-
tion does not contain a hint, the number of instructions is a
predetermined value.

10

15

20

25

30

35

40

45

50

55

8

10. The method of claim 7, wherein if the previous instruc-
tion does not contain a hint, the number of instructions is
based on the transition depth.

11. The method of claim 10, wherein the number of instruc-
tions is selectable by comparing the transition depth with a
threshold value and a selected number of instructions is zero
only if the transition depth is less than the threshold.

12. The method of claim 7, wherein if the previous instruc-
tion does not contain a hint, the number of instructions is
based on the branching value.

13. The method of claim 12, wherein the number of instruc-
tions is determined by comparing the branching value to a
threshold and pre-fetching zero instruction only if the branch-
ing value is greater than the threshold.

14. A system of pre-fetching instructions into an instruc-
tion cache for use in a Deterministic Finite Automaton (DFA)
engine, said system comprising:

an instruction cache enabled to fetch instructions from an

external memory; and

a DFA engine enabled to access instructions from the

instruction cache, and to execute said instructions and to
request pre-fetch of instructions to the instruction cache
based on an algorithm, wherein the algorithm is based on
at least one of a transition depth of a DFA descent or a
branching value of the DFA descent.

15. The system of claim 14, wherein the algorithm is based
on the transition depth.

16. The system of claim 14, wherein the algorithm is based
on the branching value.

17. The system of claim 14, wherein the algorithm is based
on the transition depth and the branching value.

18. The system of claim 14, wherein the algorithm is based
on a pre-fetch hint contained in at least one instruction.

19. The system of claim 14, wherein the algorithm is based
ona pre-fetch hint contained in at least one instruction and the
transition depth.

20. The system of claim 14, wherein the algorithm is based
ona pre-fetch hint contained in at least one instruction and the
branching value.

21. The system of claim 14, wherein the algorithm is based
ona pre-fetch hint contained in at least one instruction and the
transition depth and the branching value.

22. One or more non-transitory computer-readable media
comprising a plurality of instructions stored thereon that in
response to being executed result in a DFA engine:

accessing an instruction from an instruction cache;

determining at least one of a branching value associated
with the instruction and a transition depth associated
with the instruction;

determining a number of instructions based on at least one

of the branching value or the transition depth; and
pre-fetching the number of instructions.

#* #* #* #* #*



